FHWA Bridge Scour Program

Michigan Bridge Scour Workshop

Big Rapids, Michigan
March 10, 2009
FHWA Bridge Scour Program

- Why Scour
- History
- Current Status
- POA Highlights
- Future Direction
Why A Scour Program?

- Floods Occur in Your Community
Why A Scour Program?

- Floods Damage Roads
Why A Scour Program?

- Floods Damage Bridges
Why A Scour Program?

- 1973 – 23 bridge failures in Illinois
- 1985 – 73 bridges destroyed in Pennsylvania, Virginia & WV
- 1987 – 17 bridges damaged or destroyed New York and New England
Why A Scour Program?

- 1993 – 23 bridge failures in upper Mississippi River basin
- 1994 – 500 bridges failed in Georgia
Why A Scour Program?

Hydraulic Issues ➔ 50 to 70% All Bridge Failures
History of FHWA Scour Program

- **Research**
 - 1940’s – Laursen
 - 1950’s – FHWA and CSU
 - 1950’s – Mississippi and Alabama and CSU

- **Technical Guidance**
 - 1978 – FHWA HDS 1 Chapter 7
 - 1984 – FHWA-RD-84-100
Impetus of FHWA Scour Program

- 1987 - Schoharie Creek I-90 Bridge Failure
Program Formalized - 1988

- FHWA Technical Advisory T5140.20
 - Interim Guidelines for Evaluating Bridges for Scour

- NBIS Item 113
 - Evaluate bridges for Scour
Additional Failure

- 1989 – Hatchie River TN Bridge Failure
Updated Guidance - 1990

- HEC 18
 - Interim Guidance Updated
 - Phase I – Screening
 - Phase II - Scour evaluations

- Semi-annual progress reports
Updated Guidance - 1991

- Technical Advisory T5140.23
 - Evaluating Scour at Bridges
 - 5 Components of Scour Program

http://www fhwa dot gov/legsregs/directives/techadvs/t514023 htm
1. Evaluation by Interdisciplinary Team

- Hydraulic
- Geotech
- Structural
Technical Advisory T5140.23

2. New Bridges

- Hydraulic Analysis
 - Withstand 100 year flood
 - Not fail with superflood (>100 year)

- Geotechnical Analysis
 - Assume scour prism removed
3. Existing Bridges

- Identify Risk of Failure
 - Initial Screening and Prioritization
- Scour Evaluation
 - Scour Observed
 - Theoretical Scour (HEC 18)
4. Plan of Action

- Monitor
 - Inspections and Closures
 - During and After Floods

- Install Hydraulic or Structural Countermeasure
 - Schedule
 - Design
5. Bridge Inspectors

- Training
- Record Information
 - Condition of Bridge and Stream
 - Cross-sections
 - Compare with previous
- Communication if concerns
5. Bridge Inspectors

- NHI 135047
 - Stream Stability and Scour at Highway Bridges for Bridge Inspectors

Previous Deadlines

- March 31, 1991 – Screening Completed

- January 1997 – Evaluations Completed
 - Exempt Tidal
 - Exempt Unknowns (except Interstate)
Previous Deadlines

- 1998 – Begin Evaluating Tidal “T”s
- 1998 – Reminder about POAs
Countermeasures

- 1997 – HEC 23
 - Countermeasure Matrix
 - Design Guides

- Demo 98 Projects
 - Fixed and portable scour instrumentation
Update to Item 113

- 2001 – Clarification of Item 113
 - 7 – Countermeasure Installed but not Designed or Installed Correctly – Monitor

- 0, 1, 2 – Change Item 60 to Correspond
Revision to NBIS

- 2005 – Revision to NBIS
 - 23 CFR 650.313(e)
 - Identify Scour Critical Bridges
 - Develop POA for known and potential deficiencies
 - Monitor
 - Address Critical Findings
 - Implement POA
 - Monitor according to plan
Funding

- **Pre 1998 – Bridge Funds**
 - Inspection
 - Scour Evaluations and POAs

- **1998 – TEA-21 – Bridge Funds**
 - Inspection
 - Scour Evaluations and POAs
 - Countermeasures, only on eligible bridges

- **2005 – SAFETEA-LU – Bridge Funds**
 - Inspection
 - Scour Evaluations and POAs
 - Countermeasures (preventative maintenance)
Current Status of FHWA Scour Program

- January 4, 2008 Memo
 - Target Dates to Comply with NBIS
 - Complete Evaluations – November 2008
 - Develop POAs – November 2008 and 2009
 - Implement POAs – April 2009 and 2010
 - Michigan Division and MDOT have agreed on acceptable completion date
Technical Guidance

- HEC 18 – 4th Ed – 2001
 - Evaluating Scour at Bridges
- HEC 20 – 3rd Ed – 2001
 - Stream Stability at Highway Structures
- HEC 23 – 2nd Ed – 2001
 - Bridge Scour and Stream Instability Countermeasure Experience, Selection, and Design Guidance
- HEC 25 – 2nd Ed – 2008
 - Highways in the Coastal Environment
- POA Template – 2007
Training

- NHI 135046
 - Stream Instability and Scour at Highway Bridges

- NHI 135047
 - Stream Instability and Scour at Highway Bridges for Inspectors

- NHI 135048
 - Countermeasure Design for Scour and Stream Instability

- NHI 135082
 - Highways in the Coastal Environment

- NHI 135085
 - POA for Scour Critical Bridges (Web-based)
POA Required

- T 5140.23
- 23CFR 650.313e
 - Identify Scour Critical Bridges
 - Develop Plan
 - Monitor Known and Potential Deficiencies
 - Address Critical Findings
 - Implement Plan
 - Monitor according to Plan
POA Template

- FHWA Template

- MDOT
 - Template in MBIS
Components of POA

- Plan to Monitor Known and Potential Deficiencies
 - Who, What, When, and Where Monitor?

- Plan to Address Critical Findings
 - Replace Bridge
 - Countermeasures (HEC 23)
Plan to Monitor

- Who will inspect bridge?
 - During Flood
 - After Flood
 - Who Notify
 - Authority to Act
Plan to Monitor

- What Look For?
 - Scour
 - Limits
 - Bridge Movement
 - Vibration
 - Rotation of members
 - Dip in Roadway
 - Countermeasure in Place
 - Instrumentation Functional
Plan to Monitor

- What Look For?
Plan to Monitor

- **When Inspect?**
 - Water Level
 - Flow
 - During/After
 - Periodically/Continuously
Plan to Monitor

- Where Inspect?
 - Bridge Location Information
 - Scour Critical Bridges Identified
 - Maps
 - GIS
Plan to Monitor - Action

- Close Bridge
 - When Close
 - Who has Authority
 - Notification
 - Internally
 - Local Officials
 - Media
 - Document
 - Detour
Plan to Monitor - Action

- Detour Map
Plan to Monitor - Action

- Reopen Bridge
 - When Reopen
 - Who has Authority
 - Notification
 - Internally
 - Local Officials
 - Media
 - Document
Address Critical Findings

- Replace Bridge
 - Timeframe
 - Temporary Countermeasures
 - Monitoring
Address Critical Findings

- Countermeasures (HEC 23)
 - River Training Structures
 - Spurs
 - Bendway Weirs
 - Drop Structures
 - Retards
 - Jacks
Address Critical Findings

- Countermeasures
 - Armoring
 - Riprap
 - Articulated Blocks
Address Critical Findings

- Countermeasures
 - Structural
 - Crutch Piles
 - Sacrificial Piles/Dolphins
 - Lengthen Bridge
Address Critical Findings

- Countermeasures
 - Monitoring
 - Fixed Instrumentation
 - Portable Instrumentation
Buy In

- Signatures
 - Author
 - Supervisor
 - Governmental Officials
Maintenance and Implementation

- Periodic Review
 - Check Names and Phone Numbers
 - Review Actions Taken After Emergency
 - Check Status of Countermeasures

- Training
 - Emergency Planning Exercises

- Completed – change coding
Future of FHWA Scour Program

- Update Guidance
 - HEC 23

- Update Training
 - NHI 135047

- Research
Research

- Turner Fairbanks Lab
 - Optimum Bridge Deck Shapes to Minimize Pressure Flow Scour
 - Effects of Water Flow and Shaking on Scouring of Bridge Piers
 - Pier Scour Countermeasures Using Fluidic Devices
Research

- NCHRP
 - Project 20-05
 - Monitoring Scour Critical Bridges
 - Project 24-07(2)
 - Countermeasures to Protect Bridge Piers from Scour
 - Project 24-15(2)
 - Abutment Scour in Cohesive Materials
 - Project 24-20
 - Prediction of Scour at Bridge Abutments
 - Project 24-26
 - Effects of Debris on Bridge Pier Scour
 - Project 24-29
 - Scour at Bridge Foundations on Rock
 - Project 24-32
 - Scour at Wide Piers and Long Skewed Piers
Unknown Foundations

- January 9, 2008 – Memo
 - Target Completion for Evaluations – November 2010
 - POAs if not evaluated

- Developing Guidance
 - Met with various states
 - Compiling Guidance
 - Website
Thanks!!!

Cynthia Nurmi
Hydraulics Engineer
FHWA Resource Center
(404) 562-3908
cynthia.nurmi@fhwa.dot.gov