Pavement Rehabilitation Using Hot Mix Asphalt

- National Perspective -

NAPA
NATIONAL ASPHALT PAVEMENT ASSOCIATION
Rehabilitation Process

• Evaluate Existing Pavement and Conditions
• Evaluate Options
• Construct Project
• Monitor Performance
Evaluate Existing Pavement and Conditions

- Distress Survey.
- Drainage Survey.
- Traffic Count.
- Friction Evaluation.
- Structural Evaluation, if needed.
Distress Survey

- Routine Pavement Management Activity
- Project-by-Project Basis
- Identify Major Distress Types
 - Most Prevalent
 - Most Harmful
- Use Data to Evaluate Options or Trigger Further Investigation
Distress Survey

- Determine the Extent and Severity
 - Extent
 - Area
 - Length
 - Percent of Slabs
 - Severity
 - Width of Cracks
 - Depth of Ruts
 - Degree of Faulting
Distress Survey

• Load Related Distress
 – Examples
 • Mid-Panel Cracking
 • Fatigue Cracking
 • Rutting
 – Need Structural Evaluation

• Non-Load Related Distress
 – Examples
 • Raveling
 • Scaling
 – Consider Reactive Maintenance
Flexible Pavement Distress
Severe Bleeding
Severe Bleeding
Fatigue and Transverse Cracking
Severe and Extensive Fatigue Cracking
The Ultimate Fatigue Cracking
Severe Thermal Cracking
Thermal Cracking - Sealed
Thermal Cracking with Chip Seal and Snow Plow Damage
Thermal Cracking
Severe Thermal Cracking with Sealing?
Longitudinal Joint - Wrong Place
Joint Reflective Cracking
Stripping

Pavement Distress - Types
Raveling
Rutting
Drainage Survey

• Surface Drainage
 – Ponding
 – Drainage Inlet Locations
 – Medians and Ditches
 – Existing Edge Drains

• Subsurface
 – Infiltration
 – Weakened Areas
Traffic Count

• Total Traffic
 – AADT
 – Directional Distribution
 – Lane Distribution

• Loading
 – % Commercial Trucks
 – ESALs
Roughness

• Ranges of International Roughness Index (IRI)
 – All types of roads
 – Interstate highways
 – Comparison of states and the US
 – Vehicle operating costs versus IRI
Roughness

Figure 9.2: IRI Roughness Scale (replotted from Sayers et al., 1986)
<table>
<thead>
<tr>
<th>Description</th>
<th>PSR Rating</th>
<th>IRI</th>
<th>NHS Ride Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td>≥4.0</td>
<td><1.0 m/km (<60 in/mi)</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>3.5-3.9</td>
<td>1.0-1.5 m/km (60-94 in/mi)</td>
<td>Acceptable (0-2.7 m/km)</td>
</tr>
<tr>
<td>Fair</td>
<td>3.1-3.4</td>
<td>1.5-1.9 m/km (95-119 in/mi)</td>
<td></td>
</tr>
<tr>
<td>Mediocre</td>
<td>2.6-3.0</td>
<td>1.9-2.7 m/km (120-170 in/mi)</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>≤2.5</td>
<td>>2.7 m/km (>170 in/mi)</td>
<td>Less than Acceptable (>2.7 m/km)</td>
</tr>
</tbody>
</table>
IRI for Rural Interstates—2001

Source: FHWA, Highway Statistics, 2001
VOC versus IRI for HMA

Vehicle Operation Cost ($/veh.-km) vs. Roughness (m/km)

- Train
- Double-Unit
- Single-Unit
- Car

2.7
Friction or Skid Resistance

Friction factor (like a coefficient of friction): \(f = \frac{F}{L} \)

Skid number: \(SN = 100(f) \)

where: \(F \) = frictional resistance to motion in plane of interface

\(L \) = load perpendicular to interface
Friction or Skid Resistance

Table 9.3: Typical Skid Numbers (from Jayawickrama et al., 1996)

<table>
<thead>
<tr>
<th>Skid Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30</td>
<td>Take measures to correct</td>
</tr>
<tr>
<td>≥ 30</td>
<td>Acceptable for low volume roads</td>
</tr>
<tr>
<td>31 - 34</td>
<td>Monitor pavement frequently</td>
</tr>
<tr>
<td>≥ 35</td>
<td>Acceptable for heavily traveled roads</td>
</tr>
</tbody>
</table>
Friction or Skid Resistance

Figure 9.13: Lock Wheeled Skid Tester
Structural Evaluation

- Material Samples
 - Cores
 - Base
 - Subgrade

- Deflection Testing
 - Maximum Deflection - Overall Strength
 - Deflection 5’ From Load - Subgrade
A tolerable level of deflection is a function of traffic and the pavement structural section.
Overlaying a pavement with HMA will reduce its deflection. The thickness needed to reduce the deflection to a tolerable level can be estimated.
The deflections experienced by a pavement varies throughout the year due to temperature and moisture changes.
Primary Types of Deflection Measure Devices Used in the US

- Static (Benkelman Beam)
- Impulse (Falling Weight Deflectometer)
Benkelman Beam

Figure 9.16: Benkelman Beam Schematic

Figure 9.17: Benkelman Beam in Use
Falling Weight Deflectometer (FWD)

Figure 9.22: FWD Impulse Loading Mechanism (foreground) and Sensors (background)

Figure 9.23: FWD

Figure 9.24: Dynatest 8000 FWD

Figure 9.25: KUAB FWD

Figure 9.26: JILS FWD
Structural Evaluation with Deflections

- Maximum deflection (D_0)
- Area Parameter (A)
- Subgrade Modulus (M_R)
Area Parameter

The sensors measure pavement deflection underneath them. To calculate the FWD AREA parameter, data from the sensors at the loading plate (D_0), and 12 inches (D_1), 24 inches (D_2), and 36 inches (D_3) from the loading plate are used.

\[
\text{AREA} = \frac{6(D_0 + 2D_1 + 2D_2 + D_3)}{D_0}
\]

where:
\(\text{AREA} \) = the FWD AREA Parameter. Expressed in units of length (usually inches or mm).

\(D_0 \) = surface deflection at the test load center
\(D_1 \) = surface deflection at 12 inches from the test load center
\(D_2 \) = surface deflection at 24 inches from the test load center
\(D_3 \) = surface deflection at 36 inches from the test load center
Table 9.4: Some Typical AREA Values

<table>
<thead>
<tr>
<th>Pavement</th>
<th>AREA Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inches</td>
</tr>
<tr>
<td>Rigid pavement</td>
<td>24 - 33</td>
</tr>
<tr>
<td>Thick flexible pavement >= 100 mm (4 inches)</td>
<td>21 - 30</td>
</tr>
<tr>
<td>Thin flexible pavement < 100 mm (4 inches)</td>
<td>16 - 21</td>
</tr>
<tr>
<td>BST</td>
<td>15 - 17</td>
</tr>
<tr>
<td>Weak BST</td>
<td>12 - 15</td>
</tr>
</tbody>
</table>
Subgrade Modulus (quick estimate)
(from AASHTO 93 Guide)

\[
M_R = \frac{P(1 - \mu^2)}{(\pi)(D_r)(r)} \quad \text{(Eq. 7.16)}
\]

where \(M_R \) = backcalculated subgrade resilient modulus (psi),

\(P \) = applied load (lbs),

\(D_r \) = pavement surface deflection a distance \(r \) from the center of the load plate (inches), and

\(r \) = distance from center of load plate to \(D_r \) (inches).
Typical Values of Subgrade Moduli

<table>
<thead>
<tr>
<th>Material</th>
<th>Climate Condition</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td>Wet — No Freeze</td>
<td>Wet - Freeze</td>
<td>Unfrozen</td>
<td>Frozen</td>
</tr>
<tr>
<td></td>
<td>psi (MPa)</td>
<td>psi (MPa)</td>
<td>psi (MPa)</td>
<td>psi (MPa)</td>
<td>psi (MPa)</td>
</tr>
<tr>
<td>Clay</td>
<td>15,000 (103)</td>
<td>6,000 (41)</td>
<td>6,000 (41)</td>
<td>50,000 (345)</td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>15,000 (103)</td>
<td>10,000 (69)</td>
<td>5,000 (34)</td>
<td>50,000 (345)</td>
<td></td>
</tr>
<tr>
<td>Silty or Clayey Sand</td>
<td>20,000 (138)</td>
<td>10,000 (69)</td>
<td>5,000 (34)</td>
<td>50,000 (345)</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>25,000 (172)</td>
<td>25,000 (172)</td>
<td>25,000 (172)</td>
<td>50,000 (345)</td>
<td></td>
</tr>
<tr>
<td>Silty or Clayey Gravel</td>
<td>40,000 (276)</td>
<td>30,000 (207)</td>
<td>20,000 (138)</td>
<td>50,000 (345)</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td>50,000 (345)</td>
<td>50,000 (345)</td>
<td>40,000 (276)</td>
<td>50,000 (345)</td>
<td></td>
</tr>
</tbody>
</table>
Example of Pavement Evaluation
Data in the WSDOT PMS
Specific WSDOT structural design policy is contained in the *WSDOT Pavement Guide*, Volume 1. In general, WSDOT uses the following structural design procedures:

- New pavements (including reconstructed pavements).
 - *Flexible*. The AASHTO Guide for Design of Pavement Structures (1986 or 1993 version). This is an [empirical procedure](#).
 - *Rigid*. The AASHTO Guide for Design of Pavement Structures (1986 or 1993 version). This is an [empirical procedure](#).
- Rehabilitation.
 - *HMA overlays*. Either the [mechanistic-empirical procedure](#) used in the EVERPAVE computer program (for use with flexible pavements) or the [empirical procedure](#) described in the AASHTO Guide for Design of Pavement Structures.
 - *PCC overlays*. The AASHTO Guide for Design of Pavement Structures for unbonded PCC overlays. This is an [empirical procedure](#). Generally, only [unbonded PCC overlays](#) will be used if a PCC surfacing is selected. [Bonded PCC overlays](#) are not considered as a structural solution and have a higher than acceptable risk of premature failure.
Pavement Rehabilitation
Types of HMA overlay design procedures

- Engineering judgment

- Component analysis: Widely used in a number of applications/design procedures

- Nondestructive testing with limiting deflection: Still used with measurement instruments such as the Benkelman Beam.

- Mechanistic-empirical: This is the primary HMA overlay design method used by WSDOT. This approach is gaining acceptance in other states and countries.
Pavement Rehabilitation Component Analysis

- The Asphalt Institute (AI)
 - Determine “effective thickness” of the existing pavement structure.
 - Design a “new” pavement structure
 - Difference in the two structures (new – effective) amounts to the overlay thickness.
 - To use the AI approach, need:
 - Subgrade analysis
 - Traffic analysis
 - Pavement structure thickness analysis (determine effective thickness of existing and all new design for the given subgrade and traffic).
Component Analysis

Table 1. Example of Asphalt Institute Conversion Factors for Estimating Thickness of Existing Pavement Components to Effective Thickness [after Ref. 2]

<table>
<thead>
<tr>
<th>Description of Layer Material</th>
<th>Conversion Factor*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Native subgrade</td>
<td>0.0</td>
</tr>
<tr>
<td>2. a. Improved subgrade — predominantly granular materials</td>
<td>0.0</td>
</tr>
<tr>
<td>b. Lime modified subgrade of high PI soils</td>
<td>0.0</td>
</tr>
<tr>
<td>3. a. Granular subbase or base — CBR not less than 20</td>
<td>0.1 - 0.3</td>
</tr>
<tr>
<td>b. Cement modified subbases and bases constructed from low PI soils</td>
<td></td>
</tr>
<tr>
<td>4. a. Cement or lime-fly ash bases with pattern cracking</td>
<td>0.3 - 0.5</td>
</tr>
<tr>
<td>b. Emulsified or cutback asphalt surfaces and bases with extensive cracking, rutting, etc.</td>
<td></td>
</tr>
<tr>
<td>c. PCC pavement broken into small pieces</td>
<td></td>
</tr>
<tr>
<td>5. a. Asphalt concrete surface and base that exhibit extensive cracking</td>
<td>0.5 - 0.7</td>
</tr>
<tr>
<td>6. a. Asphalt concrete — generally uncracked</td>
<td>0.9 - 1.0</td>
</tr>
<tr>
<td>b. PCC pavement — stable, undersealed and generally uncracked pavement</td>
<td></td>
</tr>
<tr>
<td>7. Other categories of pavement layers listed in Ref. 2</td>
<td></td>
</tr>
</tbody>
</table>

*Equivalent thickness of new asphalt concrete
Component Analysis

Table 2. Asphalt Institute Traffic Classifications [after Ref. 2]

<table>
<thead>
<tr>
<th>Type of Street or Highway</th>
<th>Estimated 18,000 lb (80 kN) ESALs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Parking lots</td>
<td>5,000</td>
</tr>
<tr>
<td>2. Light traffic residential streets and farm roads</td>
<td></td>
</tr>
<tr>
<td>1. Residential streets</td>
<td>10,000</td>
</tr>
<tr>
<td>2. Rural farm and residential roads</td>
<td></td>
</tr>
<tr>
<td>1. Urban and rural minor collectors</td>
<td>100,000</td>
</tr>
<tr>
<td>2. Urban minor arterial and light industrial streets</td>
<td>1,000,000</td>
</tr>
<tr>
<td>2. Rural major collector and minor arterial highways</td>
<td></td>
</tr>
<tr>
<td>1. Urban freeways and other principal arterial highways</td>
<td>3,000,000</td>
</tr>
<tr>
<td>2. Rural interstate and other principal arterial highways</td>
<td></td>
</tr>
<tr>
<td>1. Some interstate highways</td>
<td>10,000,000</td>
</tr>
<tr>
<td>2. Some industrial roads</td>
<td></td>
</tr>
</tbody>
</table>
Component Analysis (“Figure 1”)

Note: Each plotted diagonal line represents a constant AC thickness.
Asphalt Institute Full-Depth (T_N) (actual figure from AI)

If $M_r = 15,000$ psi and design ESALs = 1,000,000, then HMA full-depth thickness = 7.7 inches
Component Analysis

- **Effective pavement thickness**

<table>
<thead>
<tr>
<th>Layer Thickness (in.)</th>
<th>Conversion Factor (Table 1)</th>
<th>Effective Thickness (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>8 x</td>
<td>0.2</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Total T_e</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- Required new "full-depth" asphalt concrete pavement thickness (T_n) = 7.7 in. (refer to Figure 1).

- Thickness of asphalt concrete overlay = $T_n - T_e = 7.7 - 3.1$ in. = 4.6 in.
Pavement Rehabilitation
Limiting Pavement Surface Deflections

Limiting pavement surface

– Surface deflections can be taken with a variety of deflection devices. Typically, this is either the Benkelman Beam (BB) or the Falling Weight Deflectometer (FWD).

– Compute the Representative Rebound Deflection (RRD). You must consider the time of the year during which the deflections are taken.

– The overlay thickness is a function of ESALs and RRD
Representative Rebound Deflection (RRD)

\[\text{RRD} = \left(\bar{x} + 2s \right) f(c) \]

- Mean of deflection measurements
- Standard deviation of deflection measurements
- Critical period adjustment factor (\(c = 1 \) if measurements made during the most critical period)
- Temperature adjustment factor
Limiting pavement surface deflections—Asphalt Institute

Figure 2. Sketch of Asphalt Institute Temperature Adjustment Factors for Benkelmen Beam Deflections [after Ref. 7.2]
Limiting pavement surface deflections—Asphalt Institute

Figure 3. Sketch of Asphalt Concrete Overlay Thickness Required to Reduce Pavement Deflection from a Measured to a Design Deflection Value [after Ref. 7.2]
Pavement Rehabilitation

AASHTO Overlay Design Procedure (1993)

- Introduction: WSDOT Pavement Guide, PG, Paragraph 1.8.1: Note types of overlays that are possible. WSDOT primarily uses the AASHTO procedure as a design check for HMA overlays placed on flexible pavement.

- Overlay design considerations
 - Pre-overlay repair including level-up or milling
 - Reflection crack control
 - Traffic (ESALs mostly)
 - Subdrainage
 - Rutting—understand cause(s)
\[D_{ol} = \frac{SN_{ol}}{\alpha_{ol}} = \frac{(SN_f - SN_{eff})}{\alpha_{ol}} \]

To come up with \(D_{ob} \), need:

- \(SN_f \)
- \(SN_{eff} \)
- \(\alpha_{ol} \)
AASHTO 93

• The effective structural number SN_{eff}:
 – Use NDT
 \[SN_{eff} = 0.00453 \sqrt{E_p} \]
 – Use Condition
 – Use Remaining Life

• The future structural number SN_f:
 – Traffic
 – Soil
 – Pavement Condition at End of Analysis
AASHTO 93

Use Nomograph as for New Pavement

Example:

\[W_0 = 5 \times 10^6 \]
\[R = 95 \% \]
\[S_0 = 0.35 \]
\[W_e = 5000 \text{ psi} \]
\[\Delta PSI = 1.5 \]

Solution: \(SN = 3.0 \)

Figure 3.1. Design Chart for Flexible Pavements Based on Using Mean Values for Each Input
AASHTO 93

\[a_{ol} = 0.42 \text{ to } 0.44 \]

\[
D_{ol} = \frac{S_{N_{ol}}}{a_{ol}} = \left(\frac{S_{N_f} - S_{N_{eff}}}{a_{ol}} \right)
\]
Perpetual Pavements

- 40-75 mm SMA, OGFC or Superpave
- 100 mm to 150 mm Zone Of High Compression
- High Modulus Rut Resistant Material (Varies As Needed)
- Max Tensile Strain
- Flexible Fatigue Resistant Material 75 - 100 mm

Pavement Foundation
Rehabilitation of Flexible Pavement to Perpetual Pavement

- Conduct investigation as typical rehab project
 - Distress Survey
 - Traffic
 - Friction
 - Drainage
 - Structural

- If damage confined to surface, consider Perpetual Pavement design
 - Determine depth of surface distress through cores
Perpetual Pavement Design

- Determine Mechanistic Design Inputs
 - Pavement Structure
 - Seasonal Material Properties – Modulus values
 - Layer Thicknesses – Use milled depth of pavement for start of 2nd layer
 - Traffic
 - Use AADT and truck classifications
- Perform structural analysis to find overlay to limit strains in pavement
Perpetual Pavement

Under ~85\% of Loads

Limit Bending to < 100 \(\mu\varepsilon \) (NCHRP 9-38)

Limit Vertical Compression to < 200\(\mu\varepsilon \) (Monismith, Nunn)

Find Required Overlay Thickness

Base (as required)

Subgrade
New Jersey I-287
Surface Cracking
Perpetual Pavement

Available at www.asphaltalliance.com
Perpetual Pavements

• Save asphalt and aggregate over the long term. It’s sustainable.
• Lower Life Cycle Cost
• Lower User Cost
Comparison of Structures

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6” HMA/10” Base</td>
<td>0</td>
<td>11” HMA/6” Base</td>
</tr>
<tr>
<td>15</td>
<td>Mill 2”/Overlay 3”</td>
<td>18</td>
<td>Mill 2”/Overlay 2”</td>
</tr>
<tr>
<td>25</td>
<td>10% Patching + Mill 2”/Overlay 3”</td>
<td>33</td>
<td>Mill 2”/Overlay 2”</td>
</tr>
<tr>
<td>35</td>
<td>Reconstruct with 8” HMA</td>
<td>48</td>
<td>Mill 2”/Overlay 2”</td>
</tr>
<tr>
<td>50</td>
<td>Mill 2”/Overlay 3”</td>
<td>50</td>
<td>-----</td>
</tr>
<tr>
<td>Year</td>
<td>Conventional (tons/lane-mile)</td>
<td>Perpetual Pavement (tons/lane-mile)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HMA*</td>
<td>Gravel Base*</td>
<td>HMA*</td>
</tr>
<tr>
<td>0</td>
<td>2,376</td>
<td>3,168</td>
<td>4,356</td>
</tr>
<tr>
<td>15</td>
<td>1,188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1,426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3,168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1,188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9,346</td>
<td>3,168</td>
<td>6,732</td>
</tr>
<tr>
<td>RAP</td>
<td>2,337</td>
<td></td>
<td>1,683</td>
</tr>
<tr>
<td>Aggregate</td>
<td>6,659</td>
<td>3,168</td>
<td>4,797</td>
</tr>
<tr>
<td>Asphalt Binder**</td>
<td>350</td>
<td></td>
<td>252</td>
</tr>
</tbody>
</table>
Material Usage

HMA, tons

Save 31%

0 5000 10000
Conv. Perp. Pavmt.

RAP, tons

Save 28%

0 1000 2000 3000
Conv. Perp. Pavmt.

Aggregate, tons

Save 32%

0 5000 10000
Conv. Perp. Pavmt.

Binder, tons

Save 28%

0 100 200 300 400
Conv. Perp. Pavmt.
Costs

Save 44%
Evaluate Options

• Select Alternatives
 – Effectiveness
 – Available Funding
 – Competing Projects

• Weigh Costs Against Effectiveness (Life Cycle Costs)

• Prioritize Projects to Optimize Available Funds

• Consider User Costs
Select Alternatives

- Rehabilitation Without Overlay
 - Reactive Maintenance
 - Crack Sealing
 - Surface Treatments

- Rehabilitation With HMA Overlay
 - HMA Overlay of Asphalt Pavement
 - HMA Overlay of PCC Pavement
Pavement Rehabilitation Design Factors

• Pavement type
• Condition of existing pavement
 – Drainage
 – Distress
 – Response to load
• Foundation strength/stiffness
 – Subbase
 – Subgrade
• Future traffic loading
• Additional corrections (safety, capacity, etc)
Rehabilitation With HMA Overlay

• Address Functional Problems
 – Skid Resistance
 – Raveling
 – Surface Distresses

• Address Structural Problems
 – Pavement Strengthening
HMA Overlay of Asphalt Pavement

• Correction of Problems
 – Cut & Patch
 – Crack Sealing
 – Mill Surface Defects

• Apply Tack Coat

• HMA Overlay
 – Thickness
 – Mix Type
Surface Milling
Asphalt Concrete Overlay—US 2
Paving Over Pizza
FHWA - Data from Long-Term Pavement Performance Study

- Data from GPS-6 (FHWA-RD-00-165)
- Conclusions
 - Thicker overlays mean less:
 - Fatigue Cracking
 - Transverse Cracking
 - Longitudinal Cracking
 - Most AC Overlays ≥ 15 years before Rehab
 - Many AC Overlays > 20 years before Significant Distress
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Presentation

Charles E. Mills, P.E., Dir. Of Engineering

2937 Atrium Drive, Suite 202
Okemos, MI 48864
517-323-7800 517-323-6505 (Fax)
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Presentation Overview

Purpose
Specification Development
Applications
Limitations
Price
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Description:

• A dense graded bituminous mixture with an application rate between 65 - 90 lbs./sq.yd.
• .60 inch to .80 inch thickness
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Surface Texture
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Close-up .75 in
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Purpose:

• Protect the pavement structure
• Slow rate of deterioration
• Correct surface deficiencies
• Improve skid - resistance
• Improve ride quality (restores crown)
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Original Performance Targets:

• Low to moderate volume roads
• Alternate to Chip Seal
• Ability to improve ride quality
• Life expectancy 6 - 8 years
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Specification Development:

- Survey of membership
- Field review of projects constructed between 1993 – 1996
- Gathered information on mixture properties
- Use local materials
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Original Mixture Specification 1993

<table>
<thead>
<tr>
<th>Aggregate Gradation:</th>
<th>Total Passing (% by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size</td>
<td></td>
</tr>
<tr>
<td>12.5 mm (1/2”)</td>
<td>100</td>
</tr>
<tr>
<td>9.5 mm (3/8”)</td>
<td>99-100</td>
</tr>
<tr>
<td>4.75 mm (#4)</td>
<td>75-95</td>
</tr>
<tr>
<td>2.36 mm (#8)</td>
<td>55-75</td>
</tr>
<tr>
<td>600 µm (#30)</td>
<td>25-45</td>
</tr>
<tr>
<td>75 µm (#200)</td>
<td>3-8</td>
</tr>
</tbody>
</table>
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Original Mixture Specification 1993
(Low to Moderate Traffic)

Physical Properties:

• Percent crush (min) 50%
• Angularity Index (MTM 118) (min) 2.5
• L.A. Abrasion (max) 40
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Original Mixture Specification 1993
(Low to Moderate Traffic)

Mixture Criteria:

• Air Voids % 4.5
• VMA (min) % 17.5
• Fines/Binder % max 1.2
• Flow (mm) 2 - 4
• Stability min 4.0 kN
Current MDOT Ultra-Thin HMA Mixture Specification
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Current Practice:

• Low and medium volume moved to pavement sealant category. Emerging technology for high volume roads
• Alternate to Micro-Surfacing & Chip Seal
• Specification developed by Industry/MDOT Mixtures Task Force
• Mixture properties/materials engineered for specific traffic levels
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Traffic Classifications

<table>
<thead>
<tr>
<th></th>
<th>Low Volume</th>
<th>Medium Volume</th>
<th>High Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. ADT*</td>
<td><380</td>
<td>380 - 3400</td>
<td>>3400</td>
</tr>
<tr>
<td></td>
<td>Comm. ADT*</td>
<td>Comm. ADT*</td>
<td>Comm. ADT*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Two-Way Truck Traffic
Physical Properties of Combined Aggregates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low Volume</th>
<th>Medium Volume</th>
<th>High Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Crush (min)</td>
<td>50%</td>
<td>75%</td>
<td>95%</td>
</tr>
<tr>
<td>Angularity Index (MTM 118) (min)</td>
<td>2.5</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>L.A. Abrasion Loss (max)</td>
<td>40</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Aggregate Wear Index</td>
<td>260</td>
<td>260</td>
<td>260</td>
</tr>
</tbody>
</table>
Ultra Thin H.M.A. Mixture Criteria

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low Volume</th>
<th>Medium Volume</th>
<th>High Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall Air Voids %</td>
<td>4.5</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>VMA % (min)</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
</tr>
<tr>
<td>Fines/Binder % (max)</td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Flow (mm)</td>
<td>2-4</td>
<td>2-4</td>
<td>2-4</td>
</tr>
<tr>
<td>Stability (min)</td>
<td>4.0 kN</td>
<td>4.0 kN</td>
<td>4.0 kN</td>
</tr>
</tbody>
</table>
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Asphalt Binder Selection

<table>
<thead>
<tr>
<th>Low Volume Comm. ADT <380</th>
<th>Medium Volume Comm. ADT 380 - 3400</th>
<th>High Volume Comm. ADT >3400</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 64-22</td>
<td>PG 64-28P</td>
<td>PG 70-22 P</td>
</tr>
</tbody>
</table>
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay Use

Existing Pavement Conditions:

• Good cross section
• Good base, structurally sound
• Visible surface distress may include:
 • Moderate cracking, ≤ 3/8” wide
 • Raveling and surface wear
 • Slight to moderate flushing or polishing
 • Occasional patch in good condition
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Fancher Street, Mt. Pleasant - 2000
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

M-60 - 2004
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

US-127 - 2004
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay Use

Existing Pavement Preparation:

• Repair of minor base failures and depressions
• Filling of voids in pavement surface
• Removal/replacement of patches with high asphalt content
Ultra-Thin Overlay Use

Limitations:

Do Not Place On...

- Severely distressed concrete
- Rutted pavements require pre-treatment (3/8 in. deep or more)
- Pavements with a weak base
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

As Bid Cost: 2007

Wtg. Avg. Cost per syd

- Ultra-Thin – low $ 2.27
- Ultra-Thin – medium $ 2.39
- Ultra-Thin – high $ 2.82
- Microsurfacing – warranty $ 2.35
Asphalt Pavement Association Of Michigan

Ultra-Thin Overlay

Prevention Maintenance Treatments Cost Comparison

<table>
<thead>
<tr>
<th>Treatment</th>
<th>$/syd</th>
<th>Cost/mile (24’ wide)</th>
<th>MDOT Life extension range (years)</th>
<th>MDOT Life extension range average (years)</th>
<th>Cost/mile* per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double chip seal</td>
<td>$2.35</td>
<td>$33,088</td>
<td>3-6</td>
<td>4.5</td>
<td>$7,353</td>
</tr>
<tr>
<td>Micro-surface</td>
<td>$2.35</td>
<td>$33,088</td>
<td>3-5</td>
<td>4</td>
<td>$8,272</td>
</tr>
<tr>
<td>Ultra-thin low</td>
<td>$2.27</td>
<td>$31,962</td>
<td>5-9</td>
<td>7</td>
<td>$4,566</td>
</tr>
<tr>
<td>Ultra-thin med</td>
<td>$2.39</td>
<td>$33,651</td>
<td>5-9</td>
<td>7</td>
<td>$4,807</td>
</tr>
<tr>
<td>Ultra-thin high</td>
<td>$2.82</td>
<td>$39,706</td>
<td>5-9</td>
<td>7</td>
<td>$5,672</td>
</tr>
</tbody>
</table>

Average Life Extension estimated by APAM

Unit Prices based on MDOT Information
Asphalt Pavement Association Of Michigan
Ultra- Thin Overlay

Genesee County - Ultra-Thin - 1997
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Davison Highway
Micro-Surfacing transitioning to Ultra-Thin overlay
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

US-127 – 3 yrs old – Medium Volume
Ultra-Thin
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Fancher Street, Mt. Pleasant – 6 years old
Asphalt Pavement Association Of Michigan
Ultra-Thin Overlay

Advantages:

• Ease of construction, use standard paver
• Minimal construction time
• Don’t have to adjust structures
• Don’t have to wait to place permanent pavement markings
Advantages:

• Very smooth riding surface
• Quiet
• Improved ride quality
• No excess stone buildup
• No broken windshields from loose aggregate