Full Depth Pavement Reclamation Using Coal Combustion Products in Marquette Country

Thomas Jansen, We Energies
Thomas Van Dam, Michigan Tech
Anne Peairs, Michigan Tech

Michigan County Engineers Workshop
February 21, 2006
Coal Combustion Products (CCP)

- Fly ash
- Bottom ash
- Boiler slag
- Flue gas desulfurization material
 - FGD wet scrubber materials
 - FGD gypsum
 - Dry scrubber materials
- Fluidized bed combustion materials
- Integrated Coal Gasification by-products
 - Slag
 - Sulfur
 - Sulfuric Acid
- Recovered coal ash

Coal ash is calcined and melted inorganic soils that are within coal
Fly ash is a pozzolan

A pozzolan is primarily a siliceous or siliceous and aluminous material, in a finely divided form and in the presence of water, chemically reacts with calcium hydroxide (lime) at ordinary temperatures to form compounds possessing cementitious properties.

U.S. CCP Production and Utilization

► Approximately 50% of US electricity is generated by coal-fueled power plants
► In 2005, over 123 million tons of CCP were produced
► 40% beneficially used (50 mill. tons)
Rules regulating the use of CCP

► CCP is a RCRA D Non-hazardous material regulated by each state
► Use of fly ash in concrete is allowed in every state
► Most states exempt CCP from solid waste regulations if beneficially used
 ▪ Wisconsin: Self implementing rules for five categories of byproducts that allow 12 types of exempted uses
 ▪ Illinois: Exempted uses
 ▪ Michigan: Exempted uses per statute and now drafting self-implementing rules

Environmental Benefits of CCP Use

► Reduce greenhouse gas emissions
 ▪ 1 ton of fly ash that replaces cement in concrete offsets about 1 ton of CO₂
► Reduce the amount of CCP landfilled
► Conserve natural resources
► Reduce the need for mining Improve roads and buildings
► More durable materials
► Reduce life-cycle impacts and costs
Today fly ash is an essential component for durable concrete
CCP is stored to supply seasonal and market demands

QC/QA includes physical and chemical testing
Controlled Low Strength Material (CLSM)

CLSM using high carbon Class F fly ash and cement

CLSM using Class C fly ash and sand

Bottom ash subbase and structural bases
Soil Stabilization

Increase the structural capacity of subgrades using cementitious fly ash

Cold In-Place Recycled Pavement (Full Depth Reclamation)

Make better roads using fly ash binder for recycling asphalt or concrete pavements to make base course.
Benefits of Full Depth Reclamation

► Reduce life cycle costs
► Reduce construction schedules
► Less impact on traffic during construction
► Increase structural capacity
► Improve durability and reduce rutting
► Improve cross sections and drainage
► Resource conservation

Costs for Full Depth Reclamation

► Typical cost range $3.00/sy to $4.25/sy
► Depends on:
 ▪ Depth of pulverization
 ▪ Amount of binder
 ▪ One or two pulverization passes
 ▪ Water truck
 ▪ Size of project
Structural Benefits: Falling Weight Deflectometer
Pavement Evaluation

- Falling Weight Deflectometer
- Seven Sensors: 0, 12”, 18”, 24”, 36”, 48”, and 60” from the center of loading
- Impact Load = 40KN (9000 lbs)
- Performed in the outer wheel path every 100’

Pavement Deflection

![Graph showing pavement deflection over time with data for 2001 and 2002.]
Structural Number Distribution

Tests Number

Structural Number

Fly Ash Content vs. Resilient Modulus

Fly Ash Content (%)

Resilient Modulus (ksi)
Marquette County Presque Isle Power Plant Project Overview

► 3.6 mile Landfill Haul Road
 - One existing asphalt pavement section
 - Two existing gravel sections
► Full Depth Reclamation incorporating Bottom Ash, Class C Fly Ash and Cement Kiln dust
 - Bottom ash addition 3” to 4” (used 3,100 tons)
 - Fly ash binder addition: 11% application rate (used 1,900 tons of fly ash)
 - Cement Kiln dust (CKD) also evaluated
 - Generally did not add water – conditions were close to the optimum moisture at 8% to 9%
► Showed good stabilization
Pre-existing Road Conditions

- Fly Ash from Presque Isle Power Plant (PIPP) in Marquette, MI
- Less than 5% sulfur reduces swelling potential
- Prefer low unburned carbon content in fly ash

Fly Ash Composition

<table>
<thead>
<tr>
<th>PIPP Fly Ash</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Silica, Aluminum, Iron</td>
<td>63.8%</td>
</tr>
<tr>
<td>Silicon Dioxide</td>
<td>39.0%</td>
</tr>
<tr>
<td>Aluminum Oxide</td>
<td>18.9%</td>
</tr>
<tr>
<td>Iron Oxide</td>
<td>5.8%</td>
</tr>
<tr>
<td>Sulfur Trioxide</td>
<td>2.4%</td>
</tr>
<tr>
<td>Calcium Oxide</td>
<td>18.9%</td>
</tr>
<tr>
<td>LOI</td>
<td>1.0%</td>
</tr>
</tbody>
</table>
Mix Design

► Samples analyzed to determine maximum densities of various mix combinations
 ▪ Higher dry unit weight/ fills voids with particles
► Optimum moisture content needed for maximum compressive strength
 ▪ Moisture content range 7% - 14.9%
 ▶ Target was 9%
 ▪ Moisture was adjusted in the field to reach optimum compressive strength

Mix Design

Mix combinations used-

- 25% Bottom Ash + 11% Class C Fly Ash + Reclaimed Asphaltic Material
- 25% Bottom Ash + 11% Class C Fly Ash + Recycled Gravel Material
- 25% Bottom Ash + 11% Cement Kiln Dust + Reclaimed Asphaltic Material
- 11% Class C Fly Ash + Reclaimed Asphaltic Material

% are by mass for fly ash and by depth of overall stabilization for bottom ash

One area was treated twice with fly ash and re-pulverized and re-compacted due to wet conditions
Construction Sequence

- Bottom ash delivery, spreading and grading
- Fly ash delivery and spreading
 - Use of vane spreader
 - Berm prevents fly ash from “flowing” off the pavement
- Pulverization and mixing
- Water addition (when necessary)
- Compaction

Bottom Ash Delivery Via Live Bottom Dump Truck
Bottom Ash Spreading and Grading

Vane Spreader Minimizes Dusting and Regulates Volume of Fly Ash
Vane Spreader

Why Construct a Berm?
Transfer fly ash via tanker truck to vane feeder or directly from silo

Reclamation/ Pulverization

- Water can be added to obtain optimal moisture content and mixed in with the pulverizer.
- Pulverized to 6-10 in.

*Taken from ARRA 2001
Pulverization and Mixing

Pulverization during rain
Stabilizing 1 foot off pavement edge

Pulverizer’s enclosed mixing chamber
Pulverization and Compaction

Sheepsfoot roller compacted in vibratory mode (5-8 passes) then graded immediately.

After final grading 2-3 passes with steel drum roller.

Compaction between 89.6% - 98.8%.
Water addition

![Water addition image](image)

Compressive Strengths

<table>
<thead>
<tr>
<th>No.</th>
<th>Mixture/Composition</th>
<th>Moisture Content Range (%)</th>
<th>Dry Density (pcf)</th>
<th>% Compaction Range</th>
<th>7/28/56 Days Compressive Strength Range (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25% BA (1-6) + 11% FAC + RAM</td>
<td>8.9 - 14.9</td>
<td>116.5/ 128.4</td>
<td>89.6/98.8</td>
<td>7 days 250 – 310, 28 days 260 – 290, 56 days 300 – 320</td>
</tr>
<tr>
<td>2</td>
<td>25% BA (1-6) + 11% FAC + RGM</td>
<td>7.7 - 9.1</td>
<td>122.5/ 125.4</td>
<td>94.5/96.5</td>
<td>7 days 240 – 340, 28 days 290 – 330, 56 days 340 – 400</td>
</tr>
<tr>
<td>3</td>
<td>25% BA (1-6) + 11% CKD + RAM</td>
<td>10.5 - 11.5</td>
<td>124.8/ 127.1</td>
<td>96/97.7</td>
<td>7 days 240 – 280, 28 days 410 – 540, 56 days 510 – 580</td>
</tr>
<tr>
<td>4</td>
<td>11% FA + RAM</td>
<td>8.1 - 8.3</td>
<td>126.8/ 128.2</td>
<td>96.9/98.6</td>
<td>7 days 450 – 460, 28 days 360 – 490, 56 days 390 – 460</td>
</tr>
</tbody>
</table>
PIPP Haul Road
Full Depth Reclamation Compressive Strength

Field QC /QA

Moisture and density
Molding cylinders for compressive strength using standard proctor equipment
Asphalt Pavement

► Light rain for three days during project
 ▪ Work was able to continue
 ▪ Water repelled on stabilized soil similar to a paved surface
► This allowed soils to be ready for paving when weather was conducive to paving

Asphalt Pavement

► Fly ash Section 3 1/2 in. of asphalt pavement
► Non-fly ash stabilized section 4 in. of asphalt pavement
► Thinner placement because structural coefficient increased from .14 to .28-.30
► Stabilized shoulders allowed loads at outer edges of the pavement to be uniformly supported
Regulations

► Allowed under paved roads - considered part of structural pavement
► Blending done quickly after fly ash was placed to keep fly ash from spreading outside of road
► Dust kept to a minimum – drop height of fly ash was minimized on vane truck

Regulations

► 100 tons Coal Combustion Products (CCPs) and CKD allowed per project outside of structural pavement
► Total CCP’s and CKDs used = 5160 tons
► On unpaved section (shoulder) = 210 tons
► Equals 70 tons in each section (project) which is within the limit
Summary

► Pilot projects used fly ash, bottom ash and kiln dust;
► Reduced use of new materials and reuses material
► We Energies will seek source exemption from DEQ for use beyond edge of pavement

Summary

► Showed increased dry density
► Increased load bearing capacity
► Increased savings using fly ash over cement or lime
► Overall viable option when designing roadways
► Accelerates construction schedule
► Contractors were able to construct with little difficulty
Website References

- American Coal Ash Assoc. www.acaa-usa.org
- Michigan Tech www.imp.mtu.edu
- UW-Milwaukee www.cbu.uwm.edu
- Univ. North Dakota Energy & Environmental Research Center www.undeerc.org/carrc
- DOE National Energy Technology Laboratory www.fetc.doe.gov
- Univ. of Kentucky Center for Applied Energy Research www.caer.uky.edu
- We Energies www.we-energies.com/environmental/recycle_coalash.htm

Contacts

- Dr. Tom Van Dam - MTU 906-487-2524
- Tom Jansen - We Energies 414-221-2457
- Art Covi - We Energies 414-221-4618
- Jeff Dusseault - MRT 906-226-2991
- Dave Diedrick - Lafarge 248-593-2714