SELF CONSOLIDATING CONCRETE

Effect of Mix Design on Design and Performance of Precast/Prestressed Girders

Rigoberto Burgueño, Ph.D.
Assistant Professor of Structural Engineering

Department of Civil and Environmental Engineering
Michigan State University

BACKGROUND & MOTIVATION

- **Self-Consolidating Concrete (SCC):** a specially proportioned concrete that can flow easily into forms and around steel reinforcement without segregation.

- The benefits of SCC in reduced labor needs, increased rate of production and safety, and lower noise levels have generated great interest from the precast concrete industry.

- Considerable development in SCC technology has been made through the past decades particularly in Japan, Canada, and Europe, and its applications have become widespread.

SCC FRESH PROPERTY BEHAVIOR

- [Image of SCC fresh property behavior]
BACKGROUND & MOTIVATION

- **Self-Consolidating Concrete (SCC):** A specially proportioned concrete that can flow easily into forms and around steel reinforcement without segregation.

- The benefits of SCC include reduced labor needs, increased rate of production and safety, and lower noise levels, which have generated great interest from the precast concrete industry.

- Considerable development in SCC technology has been made through the past decades, particularly in Japan, Canada, and Europe, and its applications have become widespread.

SCC BENEFITS

- Use of SCC in the US has been limited due to concerns about design and construction issues that are perceived to influence the structural integrity.

- In spite of rapid developments in SCC technology, most of the work has focused on mix design development, rheology characterization, mechanical properties, and in-situ verification.

- Very limited information exists on issues related to structural design and performance.
SCC PROPORTIONING & BEHAVIOR

- Fluidity/Deformability
 - A. Increase paste deformability
 - use of HRWR
 - balanced w/c ratio
 - B. Reduce inter-particle friction
 - low coarse aggregate volume
 - use of continuous graded powder

- Key Flow/Low Blockage
 - A. Enhance cohesiveness
 - low w/c ratio
 - use of VMA
 - B. Compatible flow space and aggregate size
 - low coarse aggregate volume
 - use of high area powder

- Homogeneity/Stability
 - A. Reduce solids separation
 - limit aggregate content
 - reduce max. size aggregate
 - increase cohesion & viscosity
 - low w/c ratio
 - use of VMA
 - B. Minimize bleeding
 - low w/c ratio
 - use of high area powder
 - increase VMA

SCC MIX DESIGN DEVELOPMENT

- No commonly accepted procedure to proportion SCC.

- Methods are bounded by two approaches:
 1) High w/c ratios (e.g., 0.45) and use of HRWR and VMA.
 2) Lower w/c ratios (e.g., 0.33), high use of HRWR and no VMA

- Approach: Develop characteristic bounding SCC mix designs.

<table>
<thead>
<tr>
<th>Mix Design</th>
<th>w/c</th>
<th>HRWR</th>
<th>VMA</th>
<th>CAC</th>
<th>S/Pt</th>
<th>EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC-1</td>
<td>0.35</td>
<td>+</td>
<td>–</td>
<td>less</td>
<td>more</td>
<td>+</td>
</tr>
<tr>
<td>SCC-2</td>
<td>0.40</td>
<td>+</td>
<td>–/–</td>
<td>less</td>
<td>more</td>
<td>+</td>
</tr>
<tr>
<td>SCC-3</td>
<td>0.45</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>NCC</td>
<td>0.40</td>
<td>+</td>
<td>–</td>
<td>more</td>
<td>less</td>
<td>–</td>
</tr>
</tbody>
</table>

MSU SCC RESEARCH – Part 1

- PCI Daniel P. Jenny Research Fellowship on “Structural Performance of PC/PS Girder Bridges using SCC”

- Objective:
 - To investigate the transfer and flexural bond length performance of prestressing strands in pc/ps bridge girders built using SCC to provide guidance on the construction and design of these elements with SCC.
MIX DESIGNS – PCI Project

<table>
<thead>
<tr>
<th>Constituents (lbs)</th>
<th>SCC1</th>
<th>SCC2A</th>
<th>SCC2B</th>
<th>SCC3</th>
<th>NCCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Sand</td>
<td>2 NS</td>
<td>1519</td>
<td>1426</td>
<td>1426</td>
<td>1273</td>
</tr>
<tr>
<td>Gravel</td>
<td>6 AA</td>
<td>1380</td>
<td>1380</td>
<td>1380</td>
<td>1435</td>
</tr>
<tr>
<td>Water (design)</td>
<td>245</td>
<td>280</td>
<td>280</td>
<td>315</td>
<td>280</td>
</tr>
<tr>
<td>Air</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>w/c Ratio</td>
<td>0.35</td>
<td>0.4</td>
<td>0.45</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Air Entraining</td>
<td>MB-AE™ 90</td>
<td>0.5</td>
<td>0.21</td>
<td>0.5</td>
<td>9.08</td>
</tr>
<tr>
<td>HRWR</td>
<td>Glenium® 3200 HES</td>
<td>6.29</td>
<td>8.49</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>VMA</td>
<td>Rheomac® VMA 358</td>
<td>0</td>
<td>5.94</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Set Retardant</td>
<td>DELVO® Stabilizer</td>
<td>6.14</td>
<td>0</td>
<td>6.09</td>
<td>6</td>
</tr>
</tbody>
</table>

Inverted Slump Flow and VSI Test

<table>
<thead>
<tr>
<th>Slump Spread Flow</th>
<th>Visual Stability Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC1</td>
<td>27°</td>
</tr>
<tr>
<td>SCC2a</td>
<td>25°</td>
</tr>
<tr>
<td>SCC2b</td>
<td>24.5°</td>
</tr>
<tr>
<td>SCC3</td>
<td>27°</td>
</tr>
</tbody>
</table>

Concrete had very low flowability

J-Ring Test

<table>
<thead>
<tr>
<th>J-Ring Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC1</td>
</tr>
<tr>
<td>SCC2a</td>
</tr>
<tr>
<td>SCC2b</td>
</tr>
<tr>
<td>SCC3</td>
</tr>
</tbody>
</table>
FRESH PROPERTIES – PCI Project

L-Box Test

<table>
<thead>
<tr>
<th>Blocking Ratio</th>
<th>t1, t2 (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC1</td>
<td>0.80</td>
</tr>
<tr>
<td>SCC2a</td>
<td>0.86</td>
</tr>
<tr>
<td>SCC2b</td>
<td>0.76</td>
</tr>
<tr>
<td>SCC3</td>
<td>0.69a</td>
</tr>
</tbody>
</table>

*Test was done too late

CONSTITUTIVE PROPERTIES – f’c

CONSTITUTIVE PROPERTIES – f_{ct}
CONSTITUTIVE PROPERTIES – E_c

TRANSFER AND DEVELOPMENT
LENGTH OF PRESTRESSING STRANDS

2 beams per concrete mix → 4 flexural bond tests per mix.
2 1/2-in. diameter strands - Stressed at ~ 0.75 f_u
38 ft in length.

Cross Section:
- 3 SCC mix designs that bound mix current design approaches
- 1 normally consolidated concrete (NCC) mix as a control mix
- SCC mix performance was to be evaluated

PRODUCTION PLAN
Casting Bed and Stressing Operation

Casting Operation with SCC Mix

Formwork Removal and Instrumentation
Prestress Release Operation

TRANSFER LENGTH EVALUATION

Strand Draw-in Measurements
Average Strain Profile for SCC1 Beams

Transfer Length Evaluation – PCI Phase 1

Transfer Length Evaluation – PCI Phase 2
Transfer Length Evaluation – Summary

<table>
<thead>
<tr>
<th>MIX TYPE</th>
<th>NCC</th>
<th>SCC1</th>
<th>SCC2</th>
<th>SCC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer length (in.)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Transfer length (mm)</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
</tbody>
</table>

Average ACI L₀ = 760.98 mm (29.96 in.)

DEVELOPMENT LENGTH EVALUATION

Development Length Test Setup
Failure Modes

Flexure Failure

Bond-Slip/Shear Failure

Typical Response with Flexure/Bond Failure

Displacement at the section (in.)

<table>
<thead>
<tr>
<th>Moment (kip-ft)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement (mm)</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
<td>200</td>
<td>225</td>
</tr>
</tbody>
</table>

Lda = 103.0 in.

Mn = 116.87 kN-m (86.20 k-ft)

Slip Onset

Mn = 3.500 mm (0.137 in.)

Development Length Test Results – Phase 1

<table>
<thead>
<tr>
<th>ACI - 318</th>
<th>M_m</th>
<th>$L_{d, ACI}$</th>
<th>$L_{d, exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC1</td>
<td>1.06</td>
<td>1.07</td>
<td>1.03</td>
</tr>
<tr>
<td>SCC2A</td>
<td>1.11</td>
<td>1.09</td>
<td>1.04</td>
</tr>
<tr>
<td>SCC2B</td>
<td>1.01</td>
<td>1.21</td>
<td>1.17</td>
</tr>
<tr>
<td>SCC3</td>
<td>1.09</td>
<td>1.79</td>
<td>1.42</td>
</tr>
<tr>
<td>NCCB</td>
<td>1.04</td>
<td>1.06</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Development Length Test Results – Phase 2

<table>
<thead>
<tr>
<th></th>
<th>ACI - 318</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_{exp}</td>
</tr>
<tr>
<td>SCC1</td>
<td>1.06</td>
</tr>
<tr>
<td>SCC2</td>
<td>1.02</td>
</tr>
<tr>
<td>SCC3</td>
<td>1.05</td>
</tr>
<tr>
<td>NCC</td>
<td>1.11</td>
</tr>
</tbody>
</table>

CONCLUSIONS – Part 1: PCI Project

- The presented studies are serving as an evaluation of SCC mix designs on the structural performance of precast SCC elements.
- SCC mix designs with moderate w/c ratios and moderate use of HRWR and VMA behave closer to NCC mixes without any chemical admixtures.
- Transfer lengths determined by draw-in and concrete strain measurements indicate that the ACI equation applies to SCC.
- Results from flexural tests indicate that development lengths for SCC mixes were slightly longer than code predicted values.

- The much longer development lengths found for SCC during the PCI Phase-1 project were verified to be due to poor strand quality.
- Development length tests using a pre-qualified strand, known to have very good properties, indicated that SCC mix designs do affect the flexural bond mechanism of prestressing strands but in a slight manner. A more definite position by the research team is under consideration.
- SCC mix proportioning seems to have different effects on the associated bond mechanisms controlling transfer and flexural bond length.
MDOT/FHWA IBRC Project: “Experimental Evaluation and Field-Monitoring of Bridge Precast/Prestressed Box-Girders made from Self-Compacting-Concrete”

Objective:
- To implement SCC in the precast/prestressed box beams of a demonstration bridge and to evaluate their short- and long-term performance against the behavior of beams from normally consolidated concrete.

MSU SCC RESEARCH – Part 2

M-50/US-127 Bridge Over the Grand River

Elevation View

Plan View

Bridge Deck

APPRAOCH

- Consider 3 SCC mix designs that bound current design approaches.
- Consider 1 normally consolidated concrete (NCC) mix as a control mix.
- The short-term flexure and shear performance of the SCC beams should be verified to be equal or better than that of the NCC beams through full-scale testing.
- The long-term performance of the SCC beams in comparison to the NCC beams to be continuously monitored for a year (or more?).
BEAM PRODUCTION

- 3 NCC and 3 SCC (one for each mix design) beams for demonstration bridge
- 2 NCC and 6 SCC (two of each mix design) for experimental evaluation
- 3 reserve NCC beams for bridge placement in case of unsatisfactory SCC performance
- Total: 17 Beams, 8 NCC and 9 SCC

MIX DESIGNS – IBRC Project

<table>
<thead>
<tr>
<th>Constituents (lbs)</th>
<th>Type</th>
<th>SCC1</th>
<th>SCC2</th>
<th>SCC3</th>
<th>SCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>Type-III</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Sand</td>
<td>2 NS</td>
<td>1,591</td>
<td>1,513</td>
<td>1,320</td>
<td>1,277</td>
</tr>
<tr>
<td>Gravel</td>
<td>6 AA</td>
<td>1,350</td>
<td>1,350</td>
<td>1,450</td>
<td>1,600</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td>256</td>
<td>285</td>
<td>320</td>
<td>280</td>
</tr>
<tr>
<td>Air (design)</td>
<td></td>
<td>0.37</td>
<td>0.41</td>
<td>0.46</td>
<td>0.40</td>
</tr>
<tr>
<td>Admixtures (oz/cwt)</td>
<td></td>
<td>54.1</td>
<td>32.9</td>
<td>47.7</td>
<td>44.4</td>
</tr>
<tr>
<td>Air Entraining</td>
<td>MBAE90</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HRWR</td>
<td>Glenium® 3400</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>VMA</td>
<td>Rheomix® VMA</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

MIX DESIGN EVALUATION

- Strand Bond Evaluation
- Mock-up Production
- Fresh Property Evaluation
BEAM CROSS SECTION

16 Prestressing Strands
0.6" diameter

5 #4 Bars spaced at 6"

BEAM PRODUCTION

NCC Beam Production
- Cast in two operations
- Increased labor and time

SCC Beam Production
- Cast in one operation
- Reduced labor and time

EXPERIMENTAL EVALUATION
EXPERIMENTAL APPROACH

• Experimental evaluation was conducted at MSU’s Civil Infrastructure Laboratory

• Two test beams were cast for each concrete
 – One was to be evaluated for flexural response
 • Four total tests
 – One was to be evaluated for shear response
 • Four total tests

FLEXURAL EVALUATION

FLEXURAL TEST SETUP
FLEXURAL FAILURE MODE

FLEXURE TEST RESULTS

FLEXURE TEST RESULTS
Achieved Flexural Capacities

<table>
<thead>
<tr>
<th></th>
<th>Maximum Total Moment (kip-ft)</th>
<th>Design Moment [AASHTO]* (kip-ft)</th>
<th>Actual to Design Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC</td>
<td>1,649</td>
<td>1,499</td>
<td>1.10</td>
</tr>
<tr>
<td>SCC1</td>
<td>1,628</td>
<td>1,499</td>
<td>1.09</td>
</tr>
<tr>
<td>SCC2</td>
<td>1,593</td>
<td>1,499</td>
<td>1.06</td>
</tr>
<tr>
<td>SCC3</td>
<td>1,590</td>
<td>1,499</td>
<td>1.06</td>
</tr>
</tbody>
</table>

* According to AASHTO Standard Specifications – 17th Ed.

Shear Evaluation

Shear Test Setup

- **Reaction Frame**
- **Actuator**
- **Shear Deformation Panel**
- **Support Block**
- **Reaction Floor**

- **NCC:** $L_v = 11$ ft
- **SCC:** $L_v = 9$ ft

SHEAR FAILURE MODE

SHEAR TEST RESULTS

For all SCC Beams: \(L_v = 9 \) ft
For NCC Beam: \(L_v = 11 \) ft

AASHTO LRFD 2nd Ed.
Design Nominal Capacity
\[\text{[Lv=9 ft]} \]

AASHTO LRFD 2nd Ed.
Design Nominal Capacity
\[\text{[Lv=11 ft]} \]

Note: AASHTO 17th Ed.: 176 kip
Design Nominal Capacity

For all SCC Beams: \(L_v = 9 \) ft
For NCC Beam: \(L_v = 11 \) ft

Note: Design Nominal Capacity: 1546 kip-ft
AASHTO 17th Ed.
SHEAR TEST RESULTS

![Graph showing shear force vs. average shear strain]

ACHIEVED SHEAR CAPACITIES

<table>
<thead>
<tr>
<th>Material</th>
<th>Maximum Total Shear (kip)</th>
<th>Design Shear [AASHTO] (kip)</th>
<th>Actual to Design Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC</td>
<td>128</td>
<td>116</td>
<td>1.11</td>
</tr>
<tr>
<td>SCC1</td>
<td>159</td>
<td>130</td>
<td>1.22</td>
</tr>
<tr>
<td>SCC2</td>
<td>146</td>
<td>130</td>
<td>1.12</td>
</tr>
<tr>
<td>SCC3</td>
<td>140</td>
<td>130</td>
<td>1.08</td>
</tr>
</tbody>
</table>

* According to AASHTO-LRFD Simplified Section Analysis Method

BRIDGE CONSTRUCTION

Beams placed: 9/15/05
Open to traffic: Late October
FIELD MONITORING

Instruments per Girder:
- 8 Vibrating Wire Strain Gages
- 8 Thermocouples

System deployed: 12/20/05

CONCLUSIONS – Part 2: IBRC Project

- All beams exceeded design capacities and were implemented in the demonstration bridge.
- The capacities of the NCC beams were slightly higher than those of the SCC beams.
- The different SCC mix designs were seen to have an effect on flexural displacements as well as in the shear post-cracking behavior.
- The field-monitoring program is underway and an automated data reduction program with potential web broadcast is under development.

ACKNOWLEDGEMENTS

The authors are grateful for the financial and in-kind support provided by:
- PCI through a 2003-2004 D.P. Jenny Research Fellowship.
- MDOT and FHWA through a 2005 IBRC Project.
- The Premarc Corp. – in-kind labor and materials
- Degussa Admixtures Inc. – technical support and materials
- The CEE Department at Michigan State University
ACKNOWLEDGEMENTS

The authors also gratefully acknowledge the collaborating effort and many fruitful discussions with:

- Mr. Armand Atienza (Formerly with Degussa)
- Mr. Doug Burnett (Formerly with Degussa)
- Mr. Tom Grumbine (Premarc)
- Mr. Don Logan (Stresscon)
- Mr. Horacio Lopez (Premarc)
- Dr. Charles Nmai (Degussa)
- Mr. Fernando Roldan (Premarc)
- Mr. Roger Till (MDOT)
- Mr. Chad Woodward (Degussa)

ACKNOWLEDGEMENTS

The experimental work for the presented projects was conducted at MSU’s Civil Infrastructure Laboratory. The work could not have been possible with the aide and assistance of it’s staff and student researchers, including:

- Mr. David Bendert
- Mr. James Brenton
- Mr. Steven Franckowiak
- Mr. Mahmoodul Haq
- Mr. Siavosh Ravanbakhsh